Problem 0: Identification
(1P)
Write your name on each sheet of paper you are using.

Problem 1: Graphing a function
(9P)
Consider the function \(f \) given by
\[
 f(x) := \left| x + \frac{1}{x} \right|.
\]

- Determine the domain of \(f \), i.e., find out for which \(x \)-values the function \(f \) is defined.
- Show that the graph of \(f \) is symmetric with respect to the \(y \)-axis.
- Determine all asymptotes of \(f \) (horizontal, vertical, slant).
- Determine all local minima and maxima of \(f \).
- Determine where \(f \) is increasing or decreasing.
- Determine where \(f \) is concave upward or downward.
- Sketch the graph of \(f \).
Problem 2: Limits

Determine if the following limits exist. If not, explain why. If yes, compute the respective value.

\[
\lim_{x \to 1} \frac{x^a - 1}{x^b - 1} \quad (a, b \in \mathbb{R})
\]

\[
\lim_{x \to 1} \frac{3^x - 3}{x - 1}
\]

Problem 3: Integration

\[
\int \frac{2x^2 - 3}{x - 4} \, dx
\]

Evaluate

\[
\int_0^2 \left(\frac{x}{e} \right)^2 \sqrt{\frac{x^3 + 8}{3}} \, dx
\]