Problem 0: Identification (1P)
Write your name on each sheet of paper you are using ;-) .

Problem 1: Graphing a polynomial (9P)

Consider the function
\[f(x) := \frac{3x^5 - 20x^3}{32}. \]

- Show that \(f(x) \) is an odd function, i.e., that its graph is symmetric with respect to the origin.
- Determine the \(x \)-intercepts of the graph of \(f \), i.e., the \(x \)-values satisfying \(f(x) = 0 \).
- Determine where \(f \) is increasing and where it is decreasing.
- Determine all local maxima and minima of \(f \).
- Where is \(f \) concave upward, where is it concave downward?
- Determine the points of inflection of \(f \).
- Determine \(\lim_{x \to \infty} f(x) \) and \(\lim_{x \to -\infty} f(x) \)
- Sketch the graph of \(f \).
Problem 2: Graphing a rational function (10P)

Consider the function

\[g(x) := \frac{x^2 - 2x + 4}{x - 2}. \]

- Determine the domain of \(g \).
- Determine all horizontal, vertical and slant asymptotes of \(g \).
- Find all local extrema of \(g \).
- Find all inflection points of \(g \).
- Sketch the graph of \(g \).

Good luck & have fun!!!