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Abstract

We present group-theoretic and cryptographic properties of a
generalization of the traditional discrete logarithm problem (DLP)
from cyclic to arbitrary finite groups. Questions related to properties
which contribute to cryptographic security are investigated, such as
distributional, coverage and complexity properties. We show that the
distribution of elements in a certain multiset tends to be uniform. In
particular we consider the family of finite non-abelian groups PSL2(Fp),
p a prime, as possible candidates in the design of new cryptographic
primitives, based on our new discrete logarithm.

AMS Subject Classification 94A60, 20G40.
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1 Introduction

Let G be a finite cyclic group of order n, written multiplicatively, and let α
be a generator of G. If β ∈ G, the discrete logarithm of β with respect to α is
the element x ∈ Zn such that β = αx. The discrete logarithm problem (DLP)
for G is to determine x when G, α and β are given.
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For the DLP to be useful in the construction of cryptographic primitives
it is necessary that the problem be intractable, in other words that there
should be no polynomial-time algorithm for solving it. The computational
intractability of the discrete logarithm problem is not a group theoretic
property – it depends on the particular representation of the cyclic group
G. For example, when G is the multiplicative group of a finite field,
Fq, the problem is generally considered intractable. On the other hand,
if G is the additive group of integers modulo n, the problem clearly has
a polynomial-time solution based on the extended Euclidean algorithm for
computing multiplicative inverses in the ring of integers modulo n. Another
cryptographically desirable property of the DLP is that if x is a uniform
random variable with values in Zn, then αx is uniformly distributed in the
cyclic group G.

Several factors motivate our extending the DLP from cyclic to non-cyclic
and non-abelian groups: (i) the desire for a formal extension of the DLP from
cyclic to arbitrary finite groups; (ii) P. Shor’s algorithm [13] for quantum
computers, which efficiently solves the traditional DLP; (iii) a search for
problems not currently solvable in sub-exponential time.

The use of particular representations of finite abelian groups is very
common in present day cryptography. Examples are subgroups of the
multiplicative group of a finite field, or subgroups of an elliptic/hyperelliptic
curve over a finite field. There are three standard methods of specifying
a general, not necessarily abelian, finite carrier group G in the context of
cryptography: (i) by permutations, (ii) by matrices over a ring, (iii) by a
finite presentation. In cases (i) & (ii) a group G is usually specified by a set
of generators, and a problem of interest is the following factorization problem:
Given an element y ∈ G, write y as a word in the generators. The problem is
not very difficult in the case of permutation groups, where one first uses the
Schreier-Sims algorithm to obtain a base and a strong generating set [4] and
then replaces the strong generators by words in the original generators given.
In case (ii) the problem is generally considered intractable [4]. In case (iii)
group elements are already words in the generators, and the relevant question
is generally undecidable. Of course the word problem is decidable for a finite
group, but depending on the presentation, could still be intractable. In case
(iii) if the group has a faithful permutation representation of small degree (i.e.
a subgroup H of relatively small index containing no proper normal subgroups
of G, then an application of the Todd-Coxeter coset enumeration procedure
with respect to H produces a faithful permutation representation of G, and
the methods of (i) can be used to solve the word problem.

In what follows we assume that G is a finite group. Let α = (α1, . . . , αt)
be an ordered t-tuple of elements of G such that G = 〈α1, . . . , αt〉, and denote
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the order of αi by ni. Define the multiset

Sk(α) =

{

k
∏

i=1

(α
xi,1

1 · · ·α
xi,t

t )

∣

∣

∣

∣

xi,j ∈ Znj

}

,

and for g ∈ G, denote by µα,k(g) the multiplicity of g in Sk(α). Further,
define the set

Ŝk(α) = {g ∈ G | g ∈ Sk(α)}.

Since G = 〈α1, . . . , αt〉, there is a smallest positive integer k0 such that
for each k ≥ k0, G ⊆ Sk(α). The integer k0 is called the depth of G relative
to α. If k ≥ k0 we also say that Sk(α) and Ŝk(α) cover G. Clearly
|G| ≤ (

∏t

i=1 ni)
k0.

Definition. Given an element y ∈ G , the generalized discrete logarithm
problem (GDLP) for y with respect to α is: Find a positive integer k and
a kt-tuple of non-negative integers x = (x1,1, . . . , x1,t, . . . , xk,1, . . . , xk,t) such
that

y =
k
∏

i=1

α
xi,1

1 · · ·α
xi,t

t . (1)

We formally write the product on the right-hand side of (1) as α
x. The

kt-tuples x for which (1) holds will be called the generalized discrete logarithms
of y with respect to α.

If k is the smallest positive integer for which y ∈ Sk(α), the
lexicographically smallest kt-tuple (x1,1, . . . , x1,t, . . . , xk,1, . . . , xk,t) among all
the kt-tuples of non-negative integers satisfying equation (1) is called the
discrete logarithm of y with respect to α. Moreover, the problem of
determining the discrete logarithm of y ∈ G with respect to α is referred
to as the discrete logarithm problem (DLP) with respect to α.

The DLP relative to a given α = (α1, . . . , αt) is obviously well-defined.
If x is a generalized discrete logarithm of y, and 1 = α

x
′

, then the catenations
x,x′ and x′,x are also generalized discrete logarithms of y. Hence, by
allowing k to increase, one can obtain infinitely many generalized discrete
logarithms of y ∈ G. Understanding the GDLP with respect to α corresponds
to knowing the group theoretic relations of length at most k0t among the
generators α = (α1, . . . , αt) in the particular representation given. The task
of understanding the GDLP for a given group G and α leads to an exploration
of numerous induced presentations of the group.

We explore cryptographic and group-theoretic characteristics that would
be required in any secure application of the GDLP. In addition to determining
the depth of a particular t−tuple of generators for a given group, we are also
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interested in distributional properties. In particular, we are interested in the
parameter

λk =
ming∈G µα,k(g)

maxg∈G µα,k(g)

A desirable property is that limk→∞ λk = 1, that ism group elements are
distributed approximately uniformly in Sk(α) when k is large. A good
situation of course occurs when the convergence is fast.

In the sections that follow, we address (i) distributional properties for finite
groups in general as k → ∞, and (ii) distributional and coverage properties for
the finite, non-abelian simple groups PSL2(Fp) where p is a prime. We suggest
that, with some care, this family of groups can be used in cryptographic
primitives based on the DLP we have defined for arbitrary finite groups.

The security of many present day cryptographic primitives relies on the
intractability of the traditional discrete logarithm problem. A new proposal,
like the present one, should demonstrate the intractability of attacking the
new scheme, with complexity of a successful attack at least as high as the
complexity of a successful attack on the traditional DLP. Finally, one should
be able to argue that the proposed scheme offers a computationally efficient
implementation, in terms of space requirements, and the time complexity for
computing y = α

x, for given α and x. We characterize these as complexity
properties of the proposed scheme. We leave the question of how G and α can
be chosen to insure desirable complexity properties to a subsequent paper.

2 Distribution

Regarding the distribution of the elements of G, in the multiset Sk(α), we
have two results – two ways to achieve uniform distribution. In Section 2.1
we prove that the distribution approaches a uniform distribution as k → ∞.
On the other hand, in Section 2.2 we show that for the projective special
linear group PSL2(Fp), where p is a prime, it is possible to achieve a uniform
distribution with fixed k and p→ ∞ (Theorem 1).

2.1 For groups in general

Let G be a finite group and suppose that α = (α1, . . . , αt) generate G. In
this section we show that the distribution of elements of the group G in the
multiset Sk(α) approaches a uniform distribution as k → ∞.

Let RG denote the group algebra of the group G over the field R of real
numbers. For each group element g ∈ G, let ag denote the multiplicity of g
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in the multiset S1(α), and let a =
∑

g∈G agg in the group algebra RG. Note
that, by the definition of multiplication in RG, for each integer k ≥ 1 and each
element g ∈ G, the coefficient of g in the product ak is precisely the multiplicity
of g in the multiset Sk(α). If n1, . . . , nt are the orders of the generators
α1, . . . αt, respectively, and we set n =

∏t

i=1 ni, then |Sk(α)| = nk for each
positive integer k. Thus, n−kak has nonnegative coefficients which sum to
1. To prove Theorem 1, we show that n−kak converges to the idempotent
|G|−1

∑

g∈G g as k → ∞.

For an element b =
∑

g∈G bgg ∈ RG, we denote by Mb the maximum of
the coefficients bg, and by mb the minimum of the coefficients bg. Our main
tool is the following elementary fact.

Lemma 1. If b =
∑

g∈G bgg and c =
∑

g∈G cgg are elements of the group
algebra RG such that

∑

g∈G bg =
∑

g∈G cg = 1, then

Mbc −mbc ≤ (1 −mb)(Mc −mc)

Proof. For some permutation σ of the elements of the group G, we have

Mbc =
∑

g∈G

bgcσ(g)

=
∑

g∈G

(bg −mb)cσ(g) +
∑

g∈G

mbcσ(g)

≤
∑

g∈G

(bg −mb)Mc +
∑

g∈G

mbcσ(g)

= (1 −mb)Mc +mb

using the fact that
∑

g∈G bg =
∑

g∈G cg = 1. Similarly, for some permutation
τ of the elements of the group G, we have

mbc =
∑

g∈G

bgcτ(g)

=
∑

g∈G

(bg −mb)cτ(g) +
∑

g∈G

mbcτ(g)

≥
∑

g∈G

(bg −mb)mc +
∑

g∈G

mbcτ(g)

= (1 −mb)mc +mb

Subtracting the two inequalities proves the lemma.

We are now ready to prove the main theorem of this section.

Theorem 1. If α = (α1, . . . , αt) generates the finite group G, then the
elements of G in the multiset Sk(α) approach a uniform distribution as
k → ∞.
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Proof. As above, let a =
∑

g∈G agg, and note that the coefficient of each group

element in the sum ak counts the multiplicity of that group element in Sk(α).
Thus, if n is the product of the orders of the generators α1, . . . , αt, then for
each positive integer k, the group algebra element n−kak has nonnegative
coefficients which sum to 1. Moreover, since α1, . . . , αt generate the group G,
there is some positive integer r such that every element of the group G occurs
at least once in the multiset Sr(α); that is, the group algebra element n−rar

has strictly positive coefficients which sum to 1.

If we set b = n−rar and c = bk for arbitrary positive integer k, then by
Lemma 1 we get Mbk+1 −mbk+1 ≤ (1−mb)(Mbk −mbk), so that by induction,
Mbk+1 − mbk+1 ≤ (1 − mb)

k(Mb − mb). Since all of the coefficients in b are
positive and sum to 1, we note that 0 ≤ 1 − mb < 1, which forces Mbk+1 −
mbk+1 → 0 as k → ∞. Thus, ark = bk → |G|−1

∑

g∈G g as k → ∞, completing
the proof.

2.2 For PSL2(Fp)

Having shown in the last section that the elements of a finite groupG approach
a uniform distribution in the multiset Sk(α) as k → ∞, provided only that
α = (α1, . . . , αt) generate G, in this section we provide sharper results for
a particular class of finite simple groups, the projective special linear group
PSL2(Fp), in case p is prime. For fixed prime p ≥ 3 and integer k ≥ 3, and
for arbitrary non-commuting elements α, β of order p in PSL2(Fp), we give a
bound on the ratios of distributions of group elements in Sk(α, β), in terms of
k and p (Theorem 2). As a consequence, it follows that, for fixed k ≥ 3, the
distributions approach a uniform distribution as p→ ∞ (Corollary 1).

We begin by recalling some notation and facts about the projective special
linear group.

Let p > 2 be a rational prime, and let Fp denote the prime field for p. Recall
that the special linear group SL2(Fp) can be viewed as the multiplicative group
of all 2×2 matrices of determinant 1, over the field Fp. The center of SL2(Fp)
is the subgroup Z(SL2(Fp)) = {±I2}, where I2 denotes the 2 × 2 identity
matrix, and the projective special linear group is the quotient PSL2(Fp) =
SL2(Fp)/Z(SL2(Fp)) = SL2(Fp)/{±I2}. One easily computes that SL2(Fp)
has order p(p2−1), so that PSL2(Fp) has order p(p2−1)/2. Thus, each Sylow
p-subgroup of PSL2(Fp) has order p.

We shall find it convenient to work in the group SL2(Fp), so that we can
compute using 2 × 2 matrices over Fp, and then reduce modulo {±I2}. In
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SL2(Fp), let

a =

[

1 1
0 1

]

and b =

[

1 0
1 1

]

For the remainder of this section, we fix α = ā and β = b̄, the images of
the matrices a and b, respectively, in PSL2(Fp). We fix also the subgroups
H = 〈±a〉 and K = 〈±b〉 in SL2(Fp), and we denote by H̄ = 〈α〉 and K̄ = 〈β〉
their images in PSL2(Fp), so that H̄ and K̄ are distinct Sylow p-subgroups of
PSL2(Fp).

We note the following well-known fact, whose proof (which includes liberal
use of the Sylow theorems) we include for completeness.

Lemma 2. Let X be the collection of all Sylow p-subgroups of PSL2(Fp).
Then |X| = p+ 1, and the action of PSL2(Fp) on X by conjugation is doubly
transitive.

Proof. As noted above, H̄ 6= K̄ are Sylow p-subgroups of PSL2(Fp), so that
|X| > 1. Since |X| ≡ 1 mod p, to prove that |X| = p + 1 it suffices to show
that |X| ≤ p+1. Note that the diagonal matrices in SL2(Fp) form a subgroup
of order p − 1, and the diagonal matrices are in the normalizer N of H in
SL2(Fp). Reducing modulo {±I2}, it follows that the normalizer N̄ of H̄ in
PSL2(Fp) contains a subgroup of order (p− 1)/2. That is, |N̄ | ≥ p(p− 1)/2,
so that |X| = |PSL2(Fp)|/|N̄ | ≤ p+ 1, as desired.

Set G = PSL2(Fp), and fix P ∈ X. Since G acts transitively on X, the
action is doubly transitive if and only if the stabilizer GP acts transitively on
X \ {P}. Because |P | = p, the orbits of P acting on X \ {P} can only have
length 1 or p. For Q ∈ X \{P}, the stabilizer GQ is the normalizer of Q in G,
so that GQ contains unique Sylow p-subgroup Q, and hence P 6⊆ GQ. That is,
the orbit of Q in the action of P on X \ {P} must have length p, from which
it follows that GP acts transitively on X \ {P}.

We observe that, since Sk(α, β) depends only on the subgroups 〈α〉 and
〈β〉, it follows from Lemma 2 that the limiting distribution of elements of
PSL2(Fp) in Sk(α, β) is independent of our choice of non-commuting elements
α and β of order p.

Our strategy is to partition PSL2(Fp) into five subsets according to the
action of right-multiplication by the subgroups H̄ and K̄, and, for each of
these subsets, compute the multiplicity of group elements of PSL2(Fp) after
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right-multiplication. We begin by defining the following subsets of SL2(Fp).

A =

{[

i j
0 i−1

]
∣

∣

∣

∣

∣

i, j ∈ Fp; i 6= 0,±1

}

B =

{[

i −k−1

k 0

]
∣

∣

∣

∣

∣

i, k ∈ Fp; k 6= 0

}

C =

{

±

[

1 + jk j
k 1

]
∣

∣

∣

∣

∣

j, k ∈ Fp; k 6= 0

}

D =

{[

i k−1(il − 1)
k l

]
∣

∣

∣

∣

∣

i, k, l ∈ Fp; k 6= 0; l 6= 0,±1

}

(2)

Clearly SL2(Fp) equals the disjoint union H ∪ A ∪ B ∪ C ∪ D. Moreover, if
we let Ā, B̄, C̄, and D̄ denote the images of A, B, C, and D, respectively, in
PSL2(Fp), then since H , A, B, C, and D are closed under multiplication by
{±I2}, it follows that PSL2(Fp) equals the disjoint union H̄ ∪ Ā∪ B̄ ∪ C̄ ∪ D̄.

We collect in the following two lemmas the main technical computations
needed for the proof of the main theorem.

Lemma 3. As multisets:

(i) H̄H̄ = H̄, where each element has multiplicity p.

(ii) ĀH̄ = Ā, where each element has multiplicity p.

(iii) B̄H̄ = B̄ ∪ C̄ ∪ D̄, where each element has multiplicity 1.

(iv) C̄H̄ = B̄ ∪ C̄ ∪ D̄, where each element has multiplicity 2.

(v) D̄H̄ = B̄ ∪ C̄ ∪ D̄, where each element has multiplicity p− 3.

Proof. We give the details of the proof of (v); the other cases are similar but
mostly easier. We first compute the product DH and count the multiplicity
of its elements as a multiset. Multiplying the expression for D in (2) by H ,
we obtain a product of the form

[

i k−1(il − 1)
k l

](

±

[

1 m
0 1

])

= ±

[

i im+ k−1(il − 1)
k km+ l

]

(3)

where i, k, l,m ∈ Fp are such that k 6= 0 and l 6= 0,±1. The fact that k 6= 0
forces the matrix in (3) to be in B ∪C ∪D. Moreover, an arbitrary matrix in
B ∪ C ∪D has the form

[

r t−1(ru− 1)
t u

]

(4)
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where r, t, u ∈ Fp are such that t 6= 0.

For the plus sign in (3), we can obtain the matrix in (4) in p− 3 ways, by
choosing i = r, choosing k = t, and, for each of the p − 3 possible values of
l, choosing m = k−1(u − l). Similarly, for the minus sign in (3), we can also
obtain the matrix in (4) in p− 3 ways, by choosing i = −r, choosing k = −t,
and, for each of the p − 3 possible values of l, choosing m = k−1(−u − l).
Thus, the multiset DH consists of the elements of the set B ∪ C ∪ D, each
with multiplicity 2(p− 3).

Finally, to obtain (v), note that each element of the set B̄ ∪ C̄ ∪ D̄ is
counted twice in the set B ∪ C ∪D and hence 4(p− 3) times in the multiset
DH . But each element of the set D̄ is counted twice in the set D, and each
element of the set H̄ is counted twice in the set H , so that each element of the
multiset D̄H̄ is counted four times in the multiset DH . Thus, each element
of the set B̄ ∪ C̄ ∪ D̄ is counted p− 3 times in the multiset D̄H̄ .

Lemma 4. As multisets:

(i) H̄K̄ = H̄ ∪ C̄, where each element has multiplicity 1.

(ii) ĀK̄ = Ā ∪ D̄, where each element has multiplicity 1.

(iii) B̄K̄ = B̄, where each element has multiplicity p.

(iv) C̄K̄ = H̄ ∪ C̄, where each element has multiplicity p− 1.

(v) D̄K̄ = Ā ∪ D̄, where each element has multiplicity p− 1.

Proof. In this case, we give the details of the proof of (iv) and leave the
(similar) proofs of the remaining cases to the interested reader. As in the proof
of Lemma 3, we first compute the product CK and count the multiplicity of
its elements as a multiset. Multiplying the expression for C in (2) by K, we
obtain a product of the form

(

±

[

1 + jk j
k 1

])(

±

[

1 0
m 1

])

= ±

[

1 + j(k +m) j
k +m 1

]

(5)

where j, k,m ∈ Fp are such that k 6= 0. The fact that the 2, 2-entry is ±1
forces the matrix in (5) to be in H ∪ C. Moreover, an arbitrary matrix in
H ∪ C has the form

±

[

1 + st s
t 1

]

(6)

where s, t ∈ Fp.

To obtain the matrix in (6) with the plus sign, we can choose the same
sign for both factors on the left-hand side of (5); to obtain the minus sign,

9



we can choose one plus sign and one minus sign. Either way, we obtain the
matrix in (6) by choosing j = s, and, for each of the p− 1 possible values of
k, choosing m = t− k. Thus, the multiset CK consists of the elements of the
set H ∪ C, each with multiplicity 2(p− 1).

Finally, to obtain (iv), we argue as in the proof of Lemma 3. Each element
of the set H̄ ∪ C̄ is counted twice in the set H ∪ C and hence 4(p− 1) times
in the multiset CK, while each element of the set C̄ is counted twice in the
set C, and each element of the set K̄ is counted twice in the set K, so that
each element of the multiset C̄K̄ is counted four times in the multiset CK.
Therefore, each element of the set H̄∪ C̄ is counted p−1 times in the multiset
C̄K̄.

Lemmas 3 and 4 allow us to set up recurrence equations to compute the
multiplicities of elements of PSL2(Fp) in the multiset Sk(α, β). For k ≥ 1, let
hk, ak, bk, ck, and dk denote the multiplicity of the elements of H̄ , Ā, B̄, C̄,
and D̄, respectively, in the multiset Sk(α, β). Since Sk+1(α, β) = Sk(α, β)H̄K̄,
let h′k, a

′

k, b
′

k, c
′

k, and d′k denote the multiplicity of the elements of H̄, Ā, B̄,
C̄, and D̄, respectively, in the multiset Sk(α, β)H̄. (Of course, hk, ak, bk, ck,
and dk are all functions of p as well as of k, as are h′k, a

′

k, b
′

k, c
′

k, and d′k.)

¿From Lemma 4 we obtain S1(α, β) = H̄K̄ = H̄ ∪ C̄, with each element of
multiplicity 1, so that h1 = c1 = 1, and a1 = b1 = d1 = 0. For k ≥ 1, Lemma
3 then yields the equations

h′k = phk

a′k = pak

b′k = c′k = d′k = bk + 2ck + (p− 3)dk

(7)

and Lemma 4 yields the equations

hk+1 = ck+1 = h′k + (p− 1)c′k
ak+1 = dk+1 = a′k + (p− 1)d′k
bk+1 = pb′k

(8)

Finally, substituting equations (7) into equations (8) yields the equations

hk+1 = ck+1 = phk + (p− 1)(bk + 2ck + (p− 3)dk)
= (3p− 2)hk + (p2 − 4p+ 3)ak + (p− 1)bk

ak+1 = dk+1 = pak + (p− 1)(bk + 2ck + (p− 3)dk)
= (2p− 2)hk + (p2 − 3p+ 3)ak + (p− 1)bk

bk+1 = p(bk + 2ck + (p− 3)dk)
= 2phk + (p2 − 3p)ak + pbk

(9)

for all integers k ≥ 1.

We are now ready to prove the main result of this section.
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Theorem 2. For prime p ≥ 3 and integer k ≥ 3, if α, β ∈ PSL2(Fp) are
non-commuting elements of order p, and if g and h are arbitrary elements of
PSL2(Fp) of multiplicities r and s, respectively, in Sk(α, β), then

∣

∣

∣

r

s
− 1
∣

∣

∣
<

1

2pk−3

Proof. Each of r and s is one of the numbers hk, ak, or bk, so it suffices to
show, for each pair of these quantities, that their ratio is sufficiently close to
1. We begin by establishing a few identities and inequalities.

Since h1 − a1 = 1, using (9) and induction we obtain

hk − ak = p(hk−1 − ak−1) = pk−1 (10)

for each k ≥ 2. Moreover, since h1 = c1 = 1 and a1 = b1 = d1 = 0, from
equations (9) we obtain the values

h2 = c2 = 3p− 2
a2 = d2 = 2p− 2
b2 = 2p

(11)

Thus, b2 − a2 = 2, so that, by (9), (10), and induction, we obtain

bk − ak = 2(hk−1 − ak−1) + bk−1 − ak−1

= 2pk−2 + 2(pk−2
−1

p−1
) = 2(pk−1

−1
p−1

)
(12)

for each k ≥ 2. From (10) and (12) we see that hk ≥ ak and bk ≥ ak for each
k ≥ 1, and hence using (9) we compute that

ak+1 ≥ (2p− 2)ak + (p2 − 3p+ 3)ak + (p− 1)ak = p2ak

for each k ≥ 1. Therefore, by (11) and induction, we get

ak ≥ p2k−4a2 = 2(p− 1)p2k−4 (13)

for each k ≥ 2.

First we note that, by (10) and (13), and since p ≥ 3,

0 <
hk − ak

ak

≤
pk−1

2(p− 1)p2k−4
=

1

2(p− 1)pk−3
≤

1

4pk−3

for each k ≥ 3, so that

0 <
hk

ak

− 1 ≤
1

4pk−3
(14)
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proving the theorem for the ratio hk/ak. Similarly, by (12) and (13),

0 <
bk − ak

ak

≤
2(pk−1 − 1)

2(p− 1)2p2k−4
=

1 − 1
pk−1

(p− 1)2pk−3
≤

1

4pk−3

for each k ≥ 3, so that

0 <
bk
ak

− 1 ≤
1

4pk−3
(15)

proving the theorem for the ratio bk/ak.

Next we note that, if 0 < x− 1 ≤ ǫ, then 0 > 1/x− 1 ≥ −ǫ(1 + ǫ)−1, and
hence |1/x− 1| ≤ ǫ. This fact, together with equations (14) and (15), yield
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∣

∣

∣

ak

hk

− 1

∣

∣

∣

∣

≤
1

4pk−3
and

∣

∣

∣

∣

ak

bk
− 1

∣

∣

∣

∣

≤
1

4pk−3
(16)

establishing the theorem for the ratios ak/hk and ak/bk as well.

Finally, we note that, by equations (12), (14), and (16),
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− 1
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∣

∣

∣

=

∣

∣

∣
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hk
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bk
−
ak

bk
+
ak

bk
− 1

∣

∣

∣

∣

≤
ak

bk

∣

∣

∣

∣

hk

ak

− 1

∣

∣

∣

∣

+

∣

∣

∣

∣

ak

bk
− 1

∣

∣

∣

∣

<
1

2pk−3

A similar computation establishes the theorem for the ratio bk/hk.

For k = 3, we can improve the bound in Theorem 2 and establish the
following necessary and sufficient condition for convergence to a uniform
distribution as p→ ∞.

Corollary 1. For prime p ≥ 3 and positive integer k, if α, β ∈ PSL2(Fp) are
non-commuting elements of order p, then the distribution of the elements of
PSL2(Fp) in Sk(α, β) approaches a uniform distribution as p→ ∞ if and only
if k ≥ 3.

Proof. Since h1 = c1 = 1 and a1 = b1 = d1 = 0, certainly a uniform
distribution is not possible for k = 1. Moreover, from equations (11) we
see, for example, that the limiting ratio of multiplicity of elements of H̄ ∪ C̄
to the multiplicity of elements of Ā ∪ D̄ in S2(α, β) is 3

2
as p → ∞, so that

the limiting distribution is also not uniform for k = 2.

On the other hand, by Theorem 2, the limiting distribution as p → ∞ is
uniform if k ≥ 4, so the only case left to establish is k = 3. We sharpen the
bound given in Theorem 2 in this case.
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Substituting the values (11) into equations (9) yields the values

h3 = c3 = (3p− 2)(3p− 2) + (p2 − 4p+ 3)(2p− 2) + (p− 1)2p = 2p3 + p2 − 2
a3 = d3 = (2p− 2)(3p− 2) + (p2 − 3p+ 3)(2p− 2) + (p− 1)2p = 2p3 − 2
b3 = 2p(3p− 2) + (p2 − 3p)(2p− 2) + p2p = 2p3 + 2p

Therefore, we easily compute that

0 <
h3

a3
− 1 =

h3 − a3

a3
=

p2

2p3 − 2
<

1

p

and

0 <
b3
a3

− 1 =
b3 − a3

a3
=

2p− 2

2p3 − 2
=

1

p2 + p+ 1
<

1

p

from which the desired limits follow exactly as in the proof of Theorem 2.

3 Coverage

Suppose that G is generated by α = (α1, . . . , αt), and its depth with respect
to α is k0. Then, for all k ≥ k0, Sk(α) covers G, and by Theorem 1 the
distribution of elements in Sk(α) tends to uniform as k → ∞. We note that
the problem of determining k0 is closely related to the problem of determining
the diameter of a finite group for a given generating set, i.e., finding the
maximum among the minimum word lengths of words over the generating set
for every g ∈ G. The problem of determining the diameter is known to be
NP-hard [2]. However, the problem of determining the depth k0 remains open.
For the groups PSL2(Fp), p a prime, we are able to state the following:

Theorem 3. For p an odd prime, let α, β be two non-commuting elements of
order p in G = PSL2(Fp). Then G = 〈α, β〉, and the depth of G with respect
to α, β is 2.

Proof. |S1(α, β)| = p2 < |G|, so Ŝ1(α, β) 6= G. However, for k = 2, from (11)
we have h2 = c2 = 3p−2, a2 = d2 = 2p−2, and b2 = 2p. Thus all elements of
PSL2(Fp) have non-zero multiplicity in S2(α, β), and so PSL2(Fp) = Ŝ2(α, β).

4 Complexity

In this section for G = 〈α1, . . . , αt〉, α = (α1, . . . , αt), we discuss the
complexity of the DLP/GDLP relative to α. We present an assumption
(Hypothesis 1) which ultimately allows us to design provably secure
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cryptographic primitives. Unless otherwise noted, complexity statements are
assumed to be based on the size of a specified security parameter. Obviously,
the security of cryptographic primitives based on the DLP relative to α

depends on the intractability of the problem of factorization of a given group
element as a word in the prescribed generators αi. We list the ways known to
us to factorize an element of a finite group G:

i) Factoring an element β ∈ G over a generating set α1, . . . , αr is equivalent
to computing preimages of the homomorphism ψ : Fr → G, where Fr is
the free group of rank r and ψ maps generators of Fr to {α1, . . . , αr}.
The problem is generally intractable except for special representations,
such as permutation representations.

ii) Alternatively, factoring an element of G over a pre-defined set of
elements α1, . . . , αt, is equivalent to factorization with respect to
logarithmic signatures or covers [9, 10]. Factoring with respect to
logarithmic signatures or covers is considered intractable except for
special instances in permutation groups.

iii) A group G is said to be polycyclic if it has a normal series of subgroups
1 = G1 ⊳G2 ⊳ · · ·⊳Gn−1 ⊳Gn = G with each Gi/Gi−1 cyclic. Polycyclic
groups have what are known as consistent polycyclic presentations.
Moreover, in connection with these presentations, an efficient algorithm,
called the collection algorithm, can be used to solve the factorization
problem with respect to the polycyclic generating set [4].

iv) The Stabilizer Chain method [8], is known to efficiently factorize
elements in permutation groups over a generating set, but there are
many examples of matrix groups of moderately small dimension where
we cannot find a suitable chain. This method does not guarantee finding
the word of minimal length either. In fact, the well known Schreier-Sims
algorithm for this task, described in [8], produces words of exponentially
growing length. How to avoid the exponential growth in permutation
groups in some situations is discussed in [1].

v) The method described in [14] can be easily and naturally generalized to
groups with more than two generators. The problem with this method is
that it requires subgroup membership tests and a single solution to the
traditional DLP in cyclic groups. Also, the running time of this method
is exponential in the size of the input.

An important observation is that the traditional DLP for cyclic groups is a
special case of our DLP for arbitrary finite groups. In particular, if G = 〈α1〉
is a finite cyclic group, then S1(α1) = Ŝ1(α1) = G, and so the definition of the
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traditional DLP and our definition of the DLP relative to (α1) coincide. An
immediate consequence is that for some groups the computational complexity
of solving the DLP and the GDLP relative to α = (α1, . . . , αt) is at least as
high as the computational complexity of solving the traditional DLP. There
are instances where a finite cyclic group with an intractable DLP is embedded
in a non-solvable finite matrix group with an intractable DLP.

It turns out however that I. Ilic [5], has recently proved that for G =
PSL2(Fp), p a prime, there are instances α = (α1, α2), G = 〈α1, α2〉 , where
the corresponding DLP with respect to α has a polynomial-time solution.
This is analogous to the DLP based on the cyclic, additive Zn. However, for
G = PSL2(Fp), the predominance of cases α = (α1, α2) lead to an intractable
DLP.

Based on the above discussion, we assert that the DLP relative to
α = (α1, . . . , αt) is generally intractable. It may be possible, therefore,
to design secure cryptographic primitives based on the more general DLP.
Of course, specific examples can be constructed where the DLP would have
efficient solutions. In this sense, the security of the DLP relative to some
α = (α1, . . . , αt) is strongly related to the underlying groups G and their
representation.

We finish this section with a security assumption based on the discussed
group theoretic facts, its cryptographic application, and an example.

Hypothesis 1. There is an infinite collection of finite groups {Gi}i∈I and
a common representation of each Gi, and there is a sequence of elements
α = (α1, . . . , αt) in Gi, such that every probabilistic algorithm running in time
polynomial in the size of the order of Gi that can solve the GDLP relative to
α (i.e., which solves equation (1) with y ∈ G chosen uniformly at random)
succeeds with negligible probability.

Since a solution to the DLP relative to α also gives a solution to the GDLP
relative to α, but not conversely, it follows that the acceptance of Hypothesis
1 also provides the existence of an infinite collection of finite groups {Gi}i∈I

under a common representation where the DLP relative to α over each Gi is
intractable.

Based on this hypothesis, it is possible to construct a collection of one-way
functions (in the sense of the definition in [3]). Such a construction was
given in [14] and it was argued that it can be used for designing a secure
signature scheme, that is, secure against an existential forgery under a chosen
message attack [12] or a secure pseudo-random number generator whose
output sequence is indistinguishable from a truly random sequence [6].

Finally, we mention one concrete and motivating example which supports
our hypothesis, the hash function of J. P. Tillich and G. Zémor [17]. Let f(x)
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be an irreducible polynomial of degree n over F2, and ρ a root of f(x). The
matrices

A =

[

ρ 1
1 0

]

and B =

[

ρ ρ+ 1
1 1

]

over F2n generate G = SL2(F2n). Let π : {0, 1} → {A,B} be given by π(0) =
A and π(1) = B. Then the Tillich-Zémor hash function from the set of all
finite binary sequences to SL2(F2n) is simply s1s2 . . . st 7→ π(s1)π(s2) · · ·π(st).
Although there are some known attacks on the Tillich-Zémor hash function
for some specific parameters and situations [16], it is still cryptographically
secure for carefully chosen parameters. We note that if an element of SL2(F2n)
can be factored into a product of A’s and B’s, then we can find collisions of
the Tillich-Zémor hash function. More precisely, the problem is to find short
relations in A and B, where by “short” here we mean a relation of length
O(log(|G|)). It is easy to prove that short relations exist, but we have no
efficient way of finding any one of them. Indeed, finding a short relation
involves the same degree of difficulty as solving the GDLP relative to (A,B).
Conversely, the ability to solve the GDLP relative to (A,B) allows us to find
pre-images of the Tillich-Zémor hash function.

5 Conclusions

We have defined a natural generalization of the discrete logarithm problem
from cyclic groups to arbitrary finite groups.

The security of the proposed DLP is based on the difficulty of the
factorization problem in finite groups given by a set of generators in particular
representations. Presently, no efficient classical or quantum algorithms are
known for factoring elements in general matrix groups. The utility of the
DLP is also based on the property that, as k gets large, the distribution of
group elements in Sk(α) tends to uniform. We have proposed that, for prime
p, the family of groups PSL2(Fp) in their usual matrix representation might be
an appropriate choice, if the generators are carefully chosen. We have further
shown that, for non-commuting elements α and β of order p in PSL2(Fp) and
for k ≥ 3, the distribution of group elements in Sk(α, β) tends to uniform as
p→ ∞.

We mention also that there are a few other extensions and generalizations
of the traditional DLP. The most recent ones include [7, 11, 15].

Finally, we list several open problems and areas for further study suggested
by our results:

a) Can the DLP/GDLP with respect to α = (α1, . . . , αt) be used in
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the direct design of encryption or signature primitives? Is there
an appropriate algebra on the exponents? Can it be used for the
construction of trapdoor one-way functions?

b) What is the real security (computational complexity) of the DLP/GDLP
with respect to α? Are there any efficient methods or ways to factorize
elements in concrete or abstract groups?

c) What other groups and representations will satisfy the assumptions in
Hypothesis 1?
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