On Jacobsthal Binary Sequences

Spyros. S. Magliveras a, Tran van Trung b, Wandi Wei a

a CCIS, Department of Math. Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA.
e-mail: spyros@fau.edu, wei@brain.math.fau.edu
b Institute for Experimental Mathematics, University of Duisburg-Essen, Essen, Germany
e-mail: trung@iem.uni-due.de

Abstract. Let \(\Sigma = \{0, 1\} \) be the binary alphabet, and \(A = \{0, 01, 11\} \) the set of three strings 0, 01, 11 over \(\Sigma \). Let \(A^* \) denote the Kleene closure of \(A \), \(\mathbb{Z}^0 \) the set of nonnegative integers, and \(\mathbb{Z}^+ \) the set of positive integers. A sequence in \(A^* \) is called a Jacobsthal binary sequence. Let \(J(n) \) denote the set of Jacobsthal binary sequences of length \(n \). For \(k \in \mathbb{Z}^+ \), \(\{s_1, s_2, \ldots, s_k\} \subseteq \mathbb{Z}^0 \) and \(n - 1 \geq s_1 > s_2 > \ldots > s_k \geq 0 \), let \(J_1(n; s_1, s_2, \ldots, s_k) \) denote the subset \(J_1(n; s_1, s_2, \ldots, s_k) = \{a_{n-1}a_{n-2} \ldots a_0 \in J(n) : a_{s_i} = 1 (1 \leq i \leq k)\} \), of \(J(n) \), and let \(N_1(n; s_1, s_2, \ldots, s_k) = |J_1(n; s_1, s_2, \ldots, s_k)| \).

When \(k = 1 \), a formula for \(N_1(n; s) \) has been derived recently. In this paper we consider the general case of \(N_1(n; s_1, s_2, \ldots, s_k) \), and study some other special types of Jacobsthal binary sequences. Some identities involving these numbers are also given.

Keywords. Jacobsthal numbers, combinatorial identities, combinatorial enumeration

Introduction

Let \(\Sigma = \{0, 1\} \) be the binary alphabet, and \(A = \{0, 01, 11\} \) the set of three strings 0, 01, 11 over \(\Sigma \). Let \(A^* \) denote the Kleene closure of \(A \), \(\mathbb{Z}^0 \) the set of nonnegative integers, and \(\mathbb{Z}^+ \) the set of positive integers. A sequence in \(A^* \) is called a Jacobsthal binary sequence. Let \(J(n) \) denote the set of Jacobsthal binary sequences of length \(n \) and let \(|J(n)| \) denote the cardinality of \(J(n) \).

The Jacobsthal numbers are defined by the recursion

\[
J_n = J_{n-1} + 2J_{n-2}, \quad n > 2
\]

(1)

together with the initial values

\[
J_0 = J_1 = 1.
\]

(2)

Note that some other authors use the initial values \(J_0 = 0, \ J_1 = 1 \) instead. Using the initial values in (2), a known result can be stated more conveniently as
\(|J(n)| = J_n. (3)\)

\(J_n\) is also called the \(n^{th}\) Jacobsthal number. For convenience, we also define

\[J_m = 0, \forall m \in \mathbb{Z}, \; m < 0. (4)\]

Based on (4), we state an obvious fact and a known result as a lemma for easy reference.

Lemma 1 The recursion (1) can be extended as

\[J_t = J_{t-1} + 2J_{t-2}, \quad t \in \mathbb{Z}, \; t \neq 0.\]

The value of \(J_n\) (\(n \in \mathbb{Z}^0\)) can be computed by

\[J_n = \frac{1}{3}(2^{n+1} + (-1)^n), \quad n \in \mathbb{Z}^0. (5)\]

The Jacobsthal numbers have applications in such areas as tiling, graph matching, alternating sign matrices, etc. ([1,2,4,5]).

Let \(k \in \mathbb{Z}^+, \{s_1, s_2, \ldots, s_{k-1}, s_k\} \subset \mathbb{Z}^0; n - 1 \geq s_1 > s_2 > \ldots > s_k \geq 0. (6)\)

Let \(J_1(n; s_1, s_2, \ldots, s_k)\) denote the following subset of \(J(n)\):

\[J_1(n; s_1, s_2, \ldots, s_k) = \{a_{n-1}a_{n-2}\ldots a_1a_0 \in J(n) : a_{s_i} = 1 \; (1 \leq i \leq k)\},\]

i.e., the subset of Jacobsthal binary sequences that have the digit 1 at each of the \(s_i^{th}\) \((1 \leq i \leq k)\) positions from the right. Let \(N_1(n; s_1, s_2, \ldots, s_k) = |J_1(n; s_1, s_2, \ldots, s_k)|. R. Grimaldi[4] considers the case where \(k = 1\), establishing a recursion for \(N_1(n; s_1)\) and then deriving the following formula:

\[N_1(n; s) = \frac{1}{3}(2^n + (-1)^n + (-1)^{n-s}2^s) (7)\]

\[= J_n - \frac{2^s}{3}(2^{n-s} + (-1)^{n-s-1}). (8)\]

For the general case, finding a formula for \(N_1(n; s_1, s_2, \ldots, s_k)\) by using a recursion seems extremely difficult. In this article we employ a different approach to dealing with this problem, namely, considering the following dual problem of \(N_1(n; s_1, s_2, \ldots, s_k)\).

Let \(r \in \mathbb{Z}^+, \{t_1, t_2, \ldots, t_{r-1}, t_r\} \subset \mathbb{Z}^0, \; n - 1 \geq t_1 > t_2 > \ldots > t_r \geq 0. (9)\)

Let \(J_0(n; t_1, t_2, \ldots, t_r)\) denote the following subset of \(J(n)\):
\[J_0(n; t_1, t_2, \ldots, t_r) = \{a_{n-1}a_{n-2} \ldots a_1a_0 \in J(n) : a_i = 0 \ (1 \leq i \leq r) \}, \]

i.e., the subset of Jacobsthal binary sequences that have the digit 0 at each of the \(t_i^{th} \) (1 \(\leq i \leq r \)) positions from the right. Let \(N_0(n; t_1, t_2, \ldots, t_r) = |J_0(n; t_1, t_2, \ldots, t_r)|. \)

In the next section we present characterizations of the sets \(J(n) \) and \(J_0(n; t_1, t_2, \ldots, t_r) \). Based on them, some combinatorial identities involving \(J_n, \ N_0(n; t_1, t_2, \ldots, t_r) \) and \(N_1(n; s_1, s_2, \ldots, s_k) \) are derived in Section 3. From these identities, formulas for \(N_0(n; t_1, t_2, \ldots, t_r) \) and \(N_1(n; s_1, s_2, \ldots, s_k) \) are obtained in the last section.

1. Characterizations of the sets \(J(n) \) and \(J_0(n; t_1, t_2, \ldots, t_r) \)

For easy reference we state a trivial fact, that is

Lemma 2 For any \(i, j \in \mathbb{Z}^+ \), \(J(i)||J(j) \subseteq J(i + j) \), where \(J(i)||J(j) = \{a||b : a \in J(i), b \in J(j) \} \) and \(|| \) stands for the concatenation operation on strings.

We now characterize the set \(J(n) \). We need

Lemma 3 Let \(l \in \mathbb{Z}^+ \). The string \(\alpha \) of the 0-digit followed by \(l-1 \) 1-digits is a Jacobsthal binary string of length \(l \).

Proof. If \(l = 2m + 1 \) for some \(m \in \mathbb{Z}^0 \), the \(l - 1 = 2m \) 1-digits in \(\alpha \) can be regarded as \(m \) copies of the string 11. Since both strings 11, 0 \(\in A \), we know \(\alpha \in A \). If \(l = 2m \) for some \(m \in \mathbb{Z}^0 \), the last \(l - 2 = 2m - 2 \) 1-digits in \(\alpha \) can be regarded as \(m - 1 \) copies of the string 11. Since both string 11, 01 \(\in A \), we know \(\alpha \in A \). \(\square \)

Theorem 1 For any \(n \in \mathbb{Z}^+ \), a binary sequence of length \(n \) is in \(J(n) \) if and only if it is an all-1 sequence of even length or its first 0-digit from the left is preceded by an all-1 subsequence of even length.

Proof. Since the string 1 \(\notin A \) but the string 11 \(\in A \), the all-1 sequence of length \(n \) is in \(J(n) \) if and only if \(n \) is even. Therefore, in what follows we only need to consider the case in which the sequence \(a_{n-1}a_{n-2} \ldots a_1a_0 \) has at least one 0-digit.

Let \(a_{n-1} \) be the first 0-digit from the left. Then

\[a_{n-1} = a_{n-2} = \ldots = a_{n-(i-1)} = 1. \]

Since the two strings 1, 10 \(\notin A \), in order for \(a_{n-1}a_{n-2} \ldots a_1a_0 \) to be in \(J(n) \), the subsequence \(a_{n-1}a_{n-2} \ldots a_{n-(i-1)} \) has to be formed by copies of the element 11 \(\in A \). This is impossible when \(i - 1 \) is odd.

We now prove that when \(i - 1 \) is even, the sequence \(a_{n-1}a_{n-2} \ldots a_1a_0 \) is in \(J(n) \) by induction on the number, say \(u \), of 0-digits in the sequence. For the case where \(u = 1 \), let \(a_i = 0 \). By Lemma 3, the subsequence \(a_ia_{i-1} \ldots a_1a_0 \in J(i+1) \). Recalling that
Theorem 2
By Theorem 1 we can give a characterization of the set \(J_n \). When \(n \) is a partition of \(J_n \), we know \(a_{n-1}a_{n-2} \ldots a_{i+1} \in J(n-i-1) \) we know \(a_{n-1}a_{n-2} \ldots a_i a_0 \in J(n) \) by Lemma 2. This establishes the induction basis.

For the inductive step, suppose that \(u > 1 \) and the conclusion is true for any sequence having exactly \(u-1 \) 0-digits. Let \(a_l \) be the first 0-digit from the right in a sequence having \(u \) 0-digits. By Lemma 3, we know \(a_la_{l-1} \ldots a_0 = 011 \ldots 1a_0 \in J(l+1) \). By the induction hypothesis, \(a_{n-1}a_{n-2} \ldots a_{l+1} \in J(n-l-1) \). Therefore, \(a_{n-1}a_{n-2} \ldots a_l a_0 \in J(n) \) by Lemma 2. This completes the induction. \(\Box \)

From this theorem, one can obtain the known formula (5) for \(|J(n)| \).

Corollary 1

\[
|J(n)| = \frac{2^{n+1} + (-1)^n}{3},
\]

Proof. Let \(J(n, i) \) denote the set of such Jacobsthal binary sequences that have their first 0-digit at the \((2i+1)^{st}\) position from the left, and \(\Delta_n \) the set consisting of the all-1 sequence of length \(n \) when \(2 \mid n \), and \(\Delta_n = \emptyset \) when \(2 \nmid n \). Then

\[
J(n) = (\bigcup_{0 \leq i \leq (n-1)/2} J(n, i)) \cup \Delta_n
\]

is a partition of \(J(n) \). By Theorem 1, when \(n = 2m \ (m \in \mathbb{Z}^+) \), we have :

\[
|J(n)| = \sum_{i=0}^{m-1} 2^{2m-(2i+1)} + 1 = \frac{1}{2} \sum_{i=0}^{m-1} 4^{m-i} + 1 = \frac{1}{2} \sum_{i=1}^{m} 4^i + 1 = 2 \sum_{i=0}^{m-1} 4^i + 1 = 2(\frac{4^m-1}{3}) + 1 = \frac{2^{m+1} + (-1)^n}{3}.
\]

When \(n = 2m + 1 \ (m \in \mathbb{Z}^0) \), we have :

\[
|J(n)| = \sum_{i=0}^{m} 2^{2m+1-(2i+1)} = \sum_{i=0}^{m} 2^{2(m-i)} = \sum_{i=0}^{m} 2^{2i} = \sum_{i=0}^{m} 4^i = \frac{4^{m+1}-1}{3} = \frac{2^{m+1} + (-1)^n}{3}. \Box
\]

By Theorem 1 we can give a characterization of the set \(J_0(n; t_1, t_2, \ldots, t_r) \). Recall that the parameters satisfy (9):

\[
r \in \mathbb{Z}^+, \{t_1, t_2, \ldots, t_{r-1}, t_r\} \subset \mathbb{Z}^0, n - 1 > t_1 > t_2 > \ldots > t_r \geq 0.
\]

Theorem 2 For any \(n \in \mathbb{Z}^+ \), the binary sequence \(a_{n-1}a_{n-2} \ldots a_1 a_0 \) of length \(n \) is in \(J_0(n; t_1, t_2, \ldots, t_r) \) if and only if the subsequence \(a_{n-1}a_{n-2} \ldots a_{t_i + 1} \) is in \(J(n-1-t_1) \) and \(a_{t_i} = 0 \ (1 \leq i \leq r) \).
Proof. Let a_j be the first 0-digit from the left. Then $j \geq t_1$. By Theorem 1, $a_{n-1}a_{n-2} \ldots a_1 a_0 \in J(n)$ if and only if the entries before a_j are all 1’s, i.e., $2|n - 1 - j$, which is the necessary and sufficient condition for $a_{n-1}a_{n-2} \ldots a_{t_1 + 1}$ to be in $J(n - 1 - t_1)$. □

It is somewhat surprising that whether $a_{n-1}a_{n-2} \ldots a_1 a_0 \in J_0(n; t_1, t_2, \ldots, t_r)$ or not is determined only by the subsequence $a_{n-1}a_{n-2} \ldots a_{t_1 + 1}$ and $a_{t_i} = 0$ $(1 \leq i \leq r)$, but is independent of the digits a_j $(0 \leq j \leq t_1 - 1, j \neq t_i)$.

Based on these theorems, some combinatorial identities involving J_n, $N_0(n; t_1, t_2, \ldots, t_r)$ and $N_1(n; s_1, s_2, \ldots, s_k)$ can be established, which will be presented in the next section.

2. Some Combinatorial Identities Involving J_n, $N_0(n; t_1, t_2, \ldots, t_r)$ and $N_1(n; s_1, s_2, \ldots, s_k)$

In this section some combinatorial identities involving J_n, $N_0(n; t_1, t_2, \ldots, t_r)$ and $N_1(n; s_1, s_2, \ldots, s_k)$ are proved. Applying them to obtain formulas for $N_0(n; t_1, t_2, \ldots, t_r)$ and $N_1(n; s_1, s_2, \ldots, s_k)$ will be the task of the next section.

We need a simple lemma:

Lemma 4 For any $n \in \mathbb{Z}^0$,
\[2^n = 3J_{n-1} + (-1)^n. \]

Proof. Recalling that $J_{-1} = 0$ (cf. (4)), we know that the statement is true when $n = 0$. When $n \in \mathbb{Z}^+$, the statement is equivalent to (5). □

We can now state the following

Theorem 3

\[
N_0(n; t_1, t_2, \ldots, t_r) = [3J_{t_1 - r} + (-1)^{t_1 - r + 1}]J_{n - t_1 - 1}
\]

\[
N_0(n; t_1, t_2, \ldots, t_r) = J_{n-r} + (-1)^{n-r-1}J_{t_1 - r}
\]

Proof. By Theorem 2, for a sequence $a_{n-1}a_{n-2} \ldots a_1 a_0$ in $J_0(n; t_1, t_2, \ldots, t_r)$, there are $|J(n - t_1 - 1)| = J_{n-t_1-1}$ many choices for the subsequences $a_{n-1}a_{n-2} \ldots a_{t_1 + 1}$. For each of these choices, there are two choices for each of the digits a_j $(0 \leq j \leq t_1 - 1, j \neq t_2, t_3, \ldots, t_r)$. Noting that $a_{t_j} = 0$ $(1 \leq j \leq r)$, we have

\[
N_0(n; t_1, t_2, \ldots, t_r) = |J(n - t_1 - 1)| \cdot 2^{t_1 - r + 1}
\]

\[
= J_{n-t_1-1}2^{t_1 - r + 1}.
\]

By Lemma 4,

\[2^{t_1 - r + 1} = 3J_{t_1 - r} + (-1)^{t_1 - r + 1}. \]
Therefore,

\[N_0(n; t_1, t_2, \ldots, t_r) = J_{n-t_1-1} [3J_{t_1-r} + (-1)^{t_1-r+1}], \]

which is (10). Similarly, we can also write

\[N_0(n; t_1, t_2, \ldots, t_r) = \]
\[= J_{n-t_1-1} 2^{t_1-r+1} \]
\[= \frac{1}{3} [2^{n-t_1} J_{n-t_1-1} 2^{t_1-r+1}] \]
\[= \frac{1}{3} [2^{n-r+1} J_{n-r} + (-1)^{n-t_1-1} [3J_{t_1-r} + (-1)^{t_1-r+1}]] \]
\[= J_{n-r} + (-1)^{n-t_1-1} J_{t_1-r}, \]

which proves (11). □

From this theorem, an identity can be immediately derived.

Corollary 2 We have the identity

\[[3J_{t_1-r} + (-1)^{t_1-r+1}] J_{n-t_1-1} = J_{n-r} + (-1)^{n-t_1-1} J_{t_1-r}. \]

This identity can also be checked by using (5).

Let us look at the cases \(r = 1 \) and \(r = 2 \).

Corollary 3 If \(n - 1 \geq u \geq 0 \), then

\[N_0(n; u) = [3J_{u-1} + (-1)^u] J_{n-u-1} \] (12)
\[N_0(n; u) = J_{n-1} + (-1)^{n-u-1} J_{u-1} \] (13)

Example 1 From (13) and \(J_0 = J_1 = 1, J_2 = 3 \), we have

\[N_0(1; 0) = J_0 + (-1)^0 J_{-1} = 1, \]
\[N_0(2; 0) = J_1 + (-1)^1 J_{-1} = 1, \]
\[N_0(2; 1) = J_1 + (-1)^0 J_0 = 2, \]
\[N_0(3; 0) = J_2 + (-1)^2 J_{-1} = 3, \]
\[N_0(3; 1) = J_2 + (-1)^1 J_0 = 2, \]
\[N_0(3; 2) = J_2 + (-1)^0 J_1 = 4. \]

The corresponding subsets of \(J(n) \) are

\[J_0(1; 0) = \{0\}, J_0(2; 0) = \{00\}, J_0(2; 1) = \{00, 01\}. \]
\[J_0(3; 0) = \{000, 010, 110\}, J_0(3; 1) = \{000, 001\}, J_0(3; 2) = \{000, 001, 010, 011\}. \]
Corollary 4. If \(n - 1 \geq u \geq 0 \), then
\[
[3J_{u-1} + (-1)^u] J_{n-u-1} = J_{n-1} + (-1)^{n-u-1} J_{u-1}.
\]

For \(N_1(n; s_1, s_2, \ldots, s_k) \), we have

Theorem 4. Suppose that \(s_1, s_2, \ldots, s_k \) satisfy (6). Then \(N_1(n; s_1, s_2, \ldots, s_k) = \)
\[
J_n + \sum_{1 \leq r \leq k} (-1)^r \sum_{1 \leq i \leq k-r+1} \binom{k-i}{r-1} J_{n-r} + (-1)^{n-s_i-1} J_{s_i-r}.
\]

Proof. First of all, for any \(1 \leq r \leq k \), by (11) we have:
\[
\sum_{1 \leq i_1 < i_2 < \ldots < i_r \leq k} N_0(n; s_{i_1}, s_{i_2}, \ldots, s_{i_r}) = \sum_{1 \leq i_1 < i_2 < \ldots < i_r \leq k} J_{n-r} + (-1)^{n-s_{i_1}-1} J_{s_{i_1}-r}.
\]

Since \(1 \leq i_1 < i_2 < \ldots < i_r \leq k \), the index \(i_1 \) must satisfy \(1 \leq i_1 \leq k-r+1 \). After \(i_1 \) has been chosen from this range, there are \(\binom{k-i_1}{r-1} \) ways of choosing \(i_2, \ldots, i_r \). Since the summands \(J_{n-r} + (-1)^{n-s_{i_1}-1} J_{s_{i_1}-r} \) do not depend on the values of \(i_2, \ldots, i_r \), we have:
\[
\sum_{1 \leq i_1 < i_2 < \ldots < i_r \leq k} J_{n-r} + (-1)^{n-s_{i_1}-1} J_{s_{i_1}-r} = \sum_{1 \leq i_1 \leq k-r+1} \binom{k-i_1}{r-1} J_{n-r} + (-1)^{n-s_{i_1}-1} J_{s_{i_1}-r}.
\]
Further, using \(i \) to substitute for \(i_1 \) in the summation on the right hand side, yields:
\[
\sum_{1 \leq i_1 < i_2 < \ldots < i_r \leq k} N_0(n; s_{i_1}, s_{i_2}, \ldots, s_{i_r}) = \sum_{1 \leq i_1 \leq k-r+1} \binom{k-i}{r-1} J_{n-r} + (-1)^{n-s_i-1} J_{s_i-r}.
\]

By the inclusion-exclusion principle, \(N_1(n; s_1, s_2, \ldots, s_k) = \)
\[
J_n + \sum_{1 \leq r \leq k} (-1)^r \sum_{1 \leq i_1 < i_2 < \ldots < i_r \leq k} N_0(n; s_{i_1}, s_{i_2}, \ldots, s_{i_r}) = \]
\[
J_n + \sum_{1 \leq r \leq k} (-1)^r \sum_{1 \leq i_1 \leq k-r+1} \binom{k-i}{r-1} J_{n-r} + (-1)^{n-s_i-1} J_{s_i-r},
\]
which proves (4). \(\Box \)

Similarly, using (10) instead of (11) yields the following:

Theorem 5. Suppose that \(s_1, s_2, \ldots, s_k \) satisfy (6). Then \(N_1(n; s_1, s_2, \ldots, s_k) = \)
\[
J_n + \sum_{1 \leq r \leq k} (-1)^r \sum_{1 \leq i_1 \leq k-r+1} \binom{k-i}{r-1} [3J_{s_i-r} + (-1)^{s_i-r+1} J_{s_i-r}].
\]
Let us look at the cases for \(k = 1, 2. \)

Corollary 5 For any \(n \in \mathbb{Z}^+ \) and \(n - 1 \geq u \geq 0, \)

\[
N_1(n; u) = 2J_{n-2} + (-1)^{n-u} J_{u-1} \\
N_1(n; u) = J_n - [3J_{u-1} + (-1)^u]J_{n-u-1}.
\]

Proof. By Theorem 4 and Lemma 1,

\[
N_1(n; u) = J_n + (-1)^{1 \cdot \binom{n-2}{1-u}} [J_{n-1} + (-1)^{n-u} J_{u-1}] \\
= J_n - J_{n-1} + (-1)^{n-u} J_{u-1} \\
= 2J_{n-2} + (-1)^{n-u} J_{u-1}.
\]

And by Theorem 5 we obtain:

\[
N_1(n; u) = J_n + (-1)^{1 \cdot \binom{n-2}{1-u}} [3J_{u-1} + (-1)^u J_{n-u-1}] \\
= J_n - [3J_{u-1} + (-1)^u J_{n-u-1}]. \quad \square
\]

Example 2 By Corollary 5, we have:

\[
N_1(1; 0) = 2J_1 + J_{-1} = 0, \quad N_1(2; 0) = 2J_0 + J_{-1} = 2, \quad N_1(2; 1) = 2J_0 - J_0 = 1, \\
N_1(3; 0) = 2J_1 - J_{-1} = 2, \quad N_1(3; 1) = 2J_1 + J_0 = 3, \quad N_1(3; 2) = 2J_1 - J_1 = 1.
\]

The corresponding subsets of \(J(n) \) are

\[
J_1(1; 0) = \emptyset, \quad J_1(2; 0) = \{01, 11\}, \quad J_1(2; 1) = \{11\}, \\
J_1(3; 0) = \{001, 011\}, \quad J_1(3; 1) = \{010, 011, 110\}, \quad J_1(3; 2) = \{110\}.
\]

Example 3 Applying Corollary 5, we have

\[
N_1(1; 0) = J_1 - [3J_{-1} + 1]J_0 = 1 - 1 = 0. \\
N_1(2; 0) = J_2 - [3J_{-1} + 1]J_1 = 3 - 1 = 2. \\
N_1(2; 1) = J_2 - [3J_0 - 1]J_0 = 3 - 2 = 1. \\
N_1(3; 0) = J_3 - [3J_{-1} + 1]J_2 = 5 - 3 = 2. \\
N_1(3; 1) = J_3 - [3J_0 - 1]J_1 = 5 - 2 = 3. \\
N_1(3; 2) = J_3 - [3J_1 + 1]J_0 = 5 - 4 = 1.
\]

The corresponding subsets of \(J(n) \) have been shown in Example 2.
Now let us turn to the case of \(k = 2 \). In this case, \(n > 1 \).

Corollary 6 For any \(n \in \mathbb{Z}^+ \), \(n \geq 2 \), and \(n - 1 \geq u > v \geq 0 \), we have:

\[
N_1(n; u, v) = 2[J_{n-2} - J_{n-3}] + (-1)^{n-u}[J_{u-1} - J_{u-2}] + (-1)^{n-v}J_{v-1}.
\]

(14)

For any \(n \in \mathbb{Z}^+ \), \(n \geq 3 \), \(n - 1 \geq u > v \geq 0 \), \(u \geq 2 \), we have:

\[
N_1(n; u, v) = 4J_{n-4} + (-1)^{n-u}2J_{u-3} + (-1)^{n-v}J_{v-1}.
\]

(15)

Proof. By Theorem 4, \(N_1(n; s_1, s_2) = \)

\[
J_n + (-1)^1 \sum_{1 \leq i \leq 2} \binom{2 - 1}{i - 1} [J_{n-i} + (-1)^{n-s_i-1}J_{s_i-1}] + \\
+ \binom{2 - 1}{2 - 1} [J_{n-2} + (-1)^{n-s_1-1}J_{s_1-2}] =
\]

\[
J_n - [J_{n-1} + (-1)^{n-s_1-1}J_{s_1-1} + J_{n-1} + (-1)^{n-s_2-1}J_{s_2-1}] + \\
+ [J_{n-2} + (-1)^{n-s_1-1}J_{s_1-2}] =
\]

\[
J_n - 2J_{n-1} + J_{n-2} + (-1)^{n-s_1}J_{s_1-1} + (-1)^{n-s_2}J_{s_2-1} + \\
+ (-1)^{n-s_1-1}J_{s_1-2} =
\]

\[
2[J_{n-2} - J_{n-3}] + (-1)^{n-s_1}[J_{s_1-1} - J_{s_1-2}] + (-1)^{n-s_2}J_{s_2-1}.
\]

Substituting \(u, v \) for \(s_1, s_2 \), respectively, gives (14).

When \(n \geq 3 \), and \(s_1 \geq 2 \), by Lemma 1 we have:

\[
J_{n-2} - J_{n-3} = 2J_{n-4}, \quad J_{s_1-1} - J_{s_1-2} = 2J_{s_1-3}.
\]

So :

\[
N_1(n; s_1, s_2) = 2[J_{n-2} - J_{n-3}] + (-1)^{n-s_1}[J_{s_1-1} - J_{s_1-2}] + (-1)^{n-s_2}J_{s_2-1} =
\]

\[
4J_{n-4} + (-1)^{n-s_1}2J_{s_1-3} + (-1)^{n-s_2}J_{s_2-1}.
\]

Substituting \(u, v \) for \(s_1, s_2 \), respectively, gives (15). \(\square \)

The identities in this section can be used to give formulas for \(N_0(n; t_1, t_2, \ldots, t_r) \) and \(N_1(n; s_1, s_2, \ldots, s_k) \), which will be presented in the next section.

3. Formulas for \(N_0(n; t_1, t_2, \ldots, t_r) \) and \(N_1(n; s_1, s_2, \ldots, s_k) \)

For \(N_0(n; t_1, t_2, \ldots, t_r) \), we have:
Theorem 6 The following holds :

\[N_0(n; t_1, t_2, \ldots, t_r) = \left(\frac{1}{3} \right)^{t_1+1-r} [2^{n-t_1} + (-1)^{n-t_1-1}] \] \hspace{1cm} (16)

Proof. From the proof of Theorem 3 and equality (5), we have

\[N_0(n; t_1, t_2, \ldots, t_r) = J_{n-1-t_1} \cdot 2^{t_1+1-r} \]

\[= \frac{1}{3} 2^{t_1+1-r} [2^{n-t_1} + (-1)^{n-t_1-1}] . \]

Note that \(N_0(n; t_1, t_2, \ldots, t_r) \) only depends on the parameters \(n, t_1 \) and \(r \), and is independent of the values of the parameters \(t_2, \ldots, t_r \).

Theorems 3 and 4 provide an explicit formulas for \(N_1(n; s_1, s_2, \ldots, s_k) \), as shown in the following theorem. Its proof is obvious and will be omitted.

Theorem 7 Suppose that \(s_1, s_2, \ldots, s_k \) satisfy (6). Then

\[N_1(n; s_1, s_2, \ldots, s_k) = \left(\frac{1}{3} \right)(2^{n+1} + (-1)^n) + \]

\[+ \left(\frac{1}{6} \right) \sum_{1 \leq r \leq k} \sum_{1 \leq i \leq k-r+1} (-1)^{k-r+1} 2^{s_i-r+1} \] \((r-1)^2 \) \(s_i \)

\[\frac{1}{6} \sum_{1 \leq r \leq k} (-1)^r 2^{s_i-r+1} + (-1)^{n-s_i-1} . \]

When \(k = 1 \), we have :

Corollary 7

\[N_1(n; s) = \frac{1}{3} (2^{n+1} - 2^s [2^{n-s} + (-1)^{n-s-1}] + (-1)^n) . \] \hspace{1cm} (17)

Example 4 By (17), the first several values of \(N_1(n; s) \) can be computed as follows.

\[N_1(1; 0) = \frac{1}{3} (2^2 - 2^0 [2^2 + (-1)^1] + (-1)^1) = 0, \]

\[N_1(2; 0) = \frac{1}{3} (2^3 - 2^0 [2^2 + (-1)^1] + (-1)^2) = 2, \]

\[N_1(2; 1) = \frac{1}{3} (2^3 - 2^1 [2^1 + (-1)^0] + (-1)^2) = 1, \]

\[N_1(3; 0) = \frac{1}{4} (2^4 - 2^0 [2^3 + (-1)^2] + (-1)^3) = 2, \]

\[N_1(3; 1) = \frac{1}{4} (2^4 - 2^1 [2^2 + (-1)^1] + (-1)^3) = 3, \]

\[N_1(3; 2) = \frac{1}{4} (2^4 - 2^2 [2^1 + (-1)^0] + (-1)^3) = 1. \]

The corresponding subsets of \(J(n) \) have been shown in Example 2.

When \(k = 2 \), we have :
Corollary 8 For any $n \geq 2$ and $n - 1 \geq u > v \geq 0$, we have:

$$N_1(n; u, v) = \left(\frac{1}{3}\right) [2^{n-1} + (-1)^{n-u}2^{u-1} + (-1)^{n-v}2^{v} + (-1)^{n}].$$

References

[5] H. Silvia, Tiling an m-by-n Area with Squares of Size up to k-by-k ($m \leq 5$), Congressus Numerantium, 140(1999), 43-64.