The competition number of a graph G with exactly one maximal clique of size ≥ 3

JungYeun Lee* (Seoul National University), Seog-Jin Kim(Konkuk University) Suh-Ryung Kim(Seoul National University), Yoshio Sano(Kyoto University)

Given a digraph D, its competition graph $C(D)$ has the same vertex set as D and an edge between two vertices x and y if there is a vertex u so that (x, u) and (y, u) are arcs of D.

Roberts [1978] observed that if G is any graph, G together with sufficiently many isolated vertices is the competition graph of an acyclic digraph. Then he defined the competition number $k(G)$ of a graph G to be the smallest number k such that G together with k isolated vertices added is the competition graph of an acyclic digraph.

Roberts [1978] gave a formula for the competition number of connected graphs with no triangles and Kim and Roberts [1997] computed the competition number of connected graphs with exactly one triangle. In this talk, we will give the competition number of a graph with exactly one maximal clique of size ≥ 3, which extends their results.

Keywords: competition graph, competition number, maximal clique